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a b s t r a c t

We analyze the impact of discretization errors on the performance of the Smagorinsky
model in large eddy simulations (LES). To avoid difficulties related to solid boundaries,
we focus on decaying homogeneous turbulence. It is shown that two numerical implemen-
tations of the model in the same finite volume code lead to significantly different results in
terms of kinetic energy decay, time evolutions of the viscous dissipation and kinetic energy
spectra. In comparison with spectral LES results, excellent predictions are however
obtained with a novel formulation of the model derived from the discrete Navier–Stokes
equations. We also highlight the effect of discretization errors on the measurement of
physical quantities that involve scales close to the grid resolution.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The aim of large eddy simulations is to reproduce with accuracy the large scale properties of a turbulent flow at a much
lower computational cost than required by direct numerical simulations (DNS). By definition, LES are thus performed on
coarse meshes that do not capture the small scales which are present in the actual flow. These subgrid scales are nevertheless
important and strongly influence the dynamics of the large resolved scales. The main challenge of LES is then to appropriately
model the influence of the subgrid scales on the resolved scales through a subgrid scale (SGS) model. On these grounds, SGS
modeling is largely a physics problem that needs to take into account the nature of turbulence and in particular the cascade
of energy from large to small scales through the inertial range. This viewpoint is supported by Kolmogorov’s universality
theory which implies that the statistical properties of turbulence are universal in the inertial range at large Reynolds
numbers.

The numerical method that is most faithful to the LES paradigm is of course the spectral method. Focusing on homoge-
neous turbulence, the resolved velocity field can indeed be developed on the basis of Fourier modes limited to wave vectors
up to a given cut-off. Hence, the neglected modes unambiguously define the subgrid scales. The LES equations are also per-
fectly well defined since all spatial derivatives can be computed exactly by multiplication of the Fourier modes with the
appropriate powers of the wave vector. In the absence of explicit filtering (for example with a Gaussian or top-hat filter),
the physical problem of subgrid scale modeling is then completely free of discretization errors.

In practice, the flow configurations are usually much more complex. For problems in wall-bounded or complex geome-
tries, one usually resorts to other spatial discretizations of the Navier–Stokes equations. Here, the attention is restricted to
finite volume methods, although the present arguments can be applied to other techniques like finite elements or finite dif-
ference schemes. Ultimately, the flow is simulated using a finite number of discrete variables located at a given set of grid
. All rights reserved.
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points. For finite volume schemes, these variables represent the velocity and pressure fields averaged over control volumes
of typical size D. In LES, D is obviously quite large in order to limit the computer requirements. If we exclude explicit filtering,
the filtering operation which requires subgrid scale modeling can then be identified with the volume averaging on the coarse
mesh (this averaging is responsible for the destruction of small scale information). However, because the mesh is coarse, the
discrete operators needed for differentiations and interpolations introduce further errors that might be very significant. For
differentiation operators, the severity of this problem increases with the order of the derivative taken. In that case, the phys-
ical relevance of the numerical results becomes questionable.

Several previous studies highlighted the interplay between discretization errors and subgrid modeling. The first system-
atic analyses of discretization errors in large eddy simulations are due to Vreman et al. [1] and Ghosal [2]. In the latter, the
author analyzed finite difference operators in homogeneous isotropic turbulence and showed that discretization errors could
be of equal importance as the subgrid scale model’s contribution. To overcome this problem, the author recommends the use
of higher-order discretization schemes or the explicit filtering of the LES field to damp scales close to the grid size. This study
was extended to the case of stratified sheared turbulence where LES discretization errors were analyzed using data obtained
from high resolution DNS [3].

The use of high-order methods is very demanding in terms of implementation and computational costs. For this reason,
many studies have focused on the application of explicit filters in low-order methods with the aim of minimizing the influ-
ence of numerical errors. As explained in [4], the distinction between discretization and explicit filtering is then essential.
Discretization is responsible for a loss of information and ultimately leads to a closure problem (this is made clear by con-
sidering the discretizing operators as ‘‘filters” [5]). This contrasts with explicit filters that can be formally taken into account
by using a power series in the filter width (at least for a certain class of filters). The benefit provided by explicit filtering still
remains unclear [6]. In particular, Lund [7] showed that a grid refinement with traditional models (i.e. without explicit fil-
tering) may lead to better results than the use of an explicit filter in two directions. Furthermore, explicit filtering introduce
difficulties related to the commutation error between the filter and differentiation operators [8]. Nevertheless, a revived
interest in explicit filters has appeared in relation to ‘‘variational multiscale models” in which scales close to the grid size
are separated from the rest of the resolved scales to determine the subgrid scale model [9,10].

Other studies have focused on the minimization of the total error (i.e. sum of modeling and discretization errors) and its
dependence on numerical and physical settings [11–14]. As also observed by [15], the reduction of one component (or both)
of the error may not necessary lead to a decrease of the total error. Hence, this may yield counter-intuitive effects and poses
the question of quality and reliability of LES predictions [14].

The purpose of this paper is twofold. We first compare two implementations of the Smagorinsky subgrid scale model in a
finite volume code. These implementations differ only in terms of the model discretization and we use a spectral LES (without
explicit filtering) as the benchmark case. It is found that the performance of the model largely depends on the discretization
adopted and we advocate the use of a discretization which is derived from the discrete implementation of the Navier–Stokes
equations. Some filtered DNS results are also presented but only for illustrative purposes. They are deliberately not used as the
main benchmark since we do not focus on the intrinsic performance of the Smagorinsky model but only on how to implement
the analytical form as faithfully as possible in a numerical code. In that respect, comparison with a spectral LES is more appro-
priate whereas comparison with a filtered DNS is more suitable to test the physical content of a model.

The second objective of this work is to bring the attention on the ambiguity, resulting from discretization errors, of phys-
ical results extracted from LES on coarse meshes. We stress that the conclusions of this study are applicable to finite element
or finite difference schemes without any significant changes. Also, to avoid having to deal with the resolution of boundary
layers, we limit our attention to homogeneous turbulence. This further allows a detailed comparison with an accurate spec-
tral solver.

The manuscript is organized as follows. The second-order finite volume LES solver is presented in Section 2. Using kinetic
energy budgets, the performance of two implementations of the Smagorinsky subgrid scale model is compared in Section 3.
In Section 4, we comment on the importance of discretization errors in the measurement of physical quantities involving
length-scales close to the grid size. Finally, our conclusions are presented in Section 5.
2. Numerical method and subgrid modeling

2.1. Numerical discretization

The computations are performed using the CDP code developed at the Center For Turbulence Research (Stanford/ NASA
Ames). This code uses a collocated discretization of the incompressible Navier–Stokes equations in a node-based formula-
tion. A typical grid element is illustrated in Fig. 1. The label C corresponds to the location of the centroid of the element
in the original volume-based grid. In the dual mesh, the node-based control volumes are centered around each of the vertices
(nodes) of this original mesh. In the figure, P represents such a node of the dual mesh. The velocity and pressure fields are
stored at these nodes and the (independent) face normal velocity Uf are stored at the centroid of the dual volume’s faces.

The details of the code are described extensively in [16–18], and therefore, only the information relevant to the present
study is reported here. The LES equations derived from the incompressible Navier–Stokes equations are solved using the fol-
lowing fractional step method:
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Fig. 1. Illustration of the collocated mesh. The shaded area represents a face belonging to the mesh dual to that defined by the original grid centroids.
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where the last term of the right-hand-side of (1) represents the subgrid scale contribution (see below for more details). In the
above equations, VP is the volume of the control volume surrounding point P and the sums are extended to all faces f delim-
iting this control volume. The face areas are denoted Af and their unit normal vectors are written bi;f . Variables have the sub-
scripts P or f depending on whether they are evaluated at the center of the control volume or the face. We further have the
time integration expressions: Adams–Bashforth,
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Un

f �
1
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Un�1
f ; ð4Þ
and Crank–Nicholson,
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i;f ¼ 1

2
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i;f Þ: ð5Þ
In order to fully close Eq. (1) (barring the definition of the subgrid scale contribution), the interpolation schemes from nodal
to face quantities have to be specified. Once a quantity / is known at two neighboring nodes, it is interpolated to the mutual
face (see Fig. 1) as
ð/Þf ¼
/P þ /nbr

2
: ð6Þ
In order to evaluate the gradients, two schemes will be compared. Both make use of the discrete Gauss theorem but they give
different interpolations.

� The first scheme leads to a central difference discretization (CDS) of the node derivative:
ð@ j/ÞPVP ¼
X

f

/P þ /nbr

2
bj;f Af : ð7Þ
� The second scheme expresses the derivative as a summation-by-part (SBP) operator [18]:
ð@ j/ÞPVP ¼
X

f

X
f 0

/f 0bj;f 0Af 0 : ð8Þ
In the SBP scheme, each control volume’s face is decomposed into subfaces f 0. In Fig. 1, the shaded area represents one face of
the control volume centered around node P, and is divided into eight subfaces, one of which is for example f 0. For a mesh
consisting of quadrilaterals, each subface is a triangle. The variable /f at the face results in an average of its values /f 0 at
the subface’s centers. Moreover, for the cartesian mesh illustrated by Fig. 1, /f 0 ¼ ð/E þ /F þ /CÞ=3, /E ¼ ð/P þ /nbrÞ=2,
/F ¼ ð/P þ /nbr þ /1 þ /2Þ=4 and /C ¼ ð/P þ /nbr þ /1 þ /2 þ /3 þ /4 þ /5 þ /6Þ=8.
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The only face-centered gradient that is not computed through (7) or (8) is that related to the second part of the viscous
term. It represents the largest contribution to the viscous stress and can be treated more accurately using the following semi-
implicit decomposition:
ð@j�u
nþ1=2
i Þf bj;f ¼

�unþ1=2
i;nbr � �unþ1=2

i;P

kxj;nbr � xj;Pk
: ð9Þ
Eq. (3) is used to compute the pressure at step nþ 1=2 through the Poisson system defined by the incompressibility
condition,
ð1=DtÞ
X

f

�uI
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f

ð@b�pÞnþ1=2
f Af : ð10Þ
Once the nodal pressures are determined through (10), the nodal and face normal velocities are updated using:
�unþ1
i;P ¼ �uI

i;P � Dtð@i�pÞnþ1=2
P ; ð11Þ
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In (10), the velocity is interpolated at the neighboring nodes following (6) and the pressure gradient at the face is computed
using a similar expression as (9). Thus, the velocity and pressure fields are evaluated using the same nodes (i.e. the neigh-
boring nodes P and nbr of a given face f ) and there is no odd-even decoupling in the algorithm [17]. This procedure however
introduces an implicit dissipation, which is proportional to the time step and the square of the mesh spacing. In the present
study, we have reduced the time step so that the artificial dissipation is two orders of magnitude smaller than the physical
dissipations (see [17] for details).

2.2. Subgrid scale model

The last ingredient that needs to be specified is the subgrid scale contribution appearing in (1). We focus here on the
widely used Smagorinsky model based on the eddy viscosity concept [19] so that the SGS term is written as:
X

f

ðmn
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with,
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Since we focus on isotropic turbulence, we choose C ¼ 0:0225 [20] and D ¼ Lx=Nx with Lx and Nx being, respectively, the com-
putational box size and the number of cells in one of the directions (the mesh is isotropic).

Simulations are performed using two discretization schemes for ðmn
e Þf . In both cases, the face-centered turbulent viscosity

is obtained from nodal values through (6).
The first implementation of the turbulent viscosity is
ðmn
e;1ÞP ¼ �2CD2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðSn

ijÞPðSn
ijÞP

q
: ð15Þ
For ðmn
e;1ÞP , each strain is computed explicitly using the CDS or SBP interpolations (7) and (8). In the following, the subgrid

scale model using this traditional ‘‘volume centered” eddy viscosity is referred to as SM1.
To introduce the second implementation of the turbulent viscosity, we make use of the identity:
SijSij ¼ ��ui@jSij þ @jð�uiSijÞ; ð16Þ
which leads to the following nodal discretization D½SijSij�P for the norm of the strain:
D½SijSij�P ¼ ��un
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X
f
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The face-centered gradients ð@j�un
i Þf bj;f are again calculated using (9) (in explicit form) while the remaining gradients are com-

puted using the CDS or SBP interpolations (7) and (8).
Based on (17), we define an alternative subgrid scale viscosity,
ðmn
e;2ÞP ¼ �2CD2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D½SijSij�P

q
: ð18Þ
Hereafter, the subgrid scale model based on this turbulent viscosity is referred to as SM2.
The main advantage ofD½SijSij�P is the fact that it is based on the discretization adopted in (1) for the viscous and SGS stres-

ses. In particular, the discrete global viscous dissipation resulting from (1) is exactly given by



A. Viré, B. Knaepen / Journal of Computational Physics 228 (2009) 8203–8213 8207
�
X

P

�unþ1=2
i;P

X
f

mð@i�un
j þ @j�u

nþ1=2
i Þf bj;f Af ; ð19Þ
and, in the limit Dt ! 0, this expression equals 2m
P

PVPD½SijSij�P on a discrete basis (see Appendix A). No such property holds
if the global dissipation is evaluated through 2m

P
PVPðSn

ijÞPðSn
ijÞP .

Several more sophisticated versions of the Smagorinsky model exist. These include the dynamic Smagorinsky model [21],
(variational) multiscale models [9,22], etc. Only the ‘‘classical” Smagorinsky model is considered here. Indeed, the aim is to
highlight the impact of discretization on the performance of a model and not to compare the quality of several models.

2.3. Simulation parameters

In order to evaluate the performance of the LES discretization and modeling described above, a comparison with pseudo-
spectral results from a previous study [23] is performed. The convective term in the pseudo-spectral code is fully de-aliased
using the 3/2-truncation rule [24] and the temporal algorithm is based on a 4th-order, low-storage, Runge–Kutta temporal
scheme [25]. The subgrid scale term is not de-aliased since it contains the square root of the strain rate and thus cannot be
de-aliased. As noted in the introduction, the pseudo-spectral Smagorinsky results have to be considered as the ‘‘target” for
the finite volume simulations since the pseudo-spectral method offers a very accurate implementation of the LES equations.

In decaying isotropic turbulence, a suitable initial condition can be obtained through the following procedure. First, a high
resolution velocity field consisting of 5123 Fourier modes is built. These modes are initialized so that their amplitudes match
the spectra of the Comte–Bellot–Corrsin [26] experiment at stage 1. The phases are initially random and the flow is left to
freely decay using direct numerical simulation (i.e. a resolved, non modeled simulation) until the skewness of the velocity
derivative reaches a quasi constant value of S ¼ �0:4. At this time, the flow is considered ‘‘physical”. It is then truncated to a
resolution of N ¼ Nx � Ny � Nz ¼ 323 modes and the resulting velocity field is used as the LES initial condition. For finite vol-
ume simulations, the Fourier field is inverted and evaluated at the control volume centroids (of the dual mesh) to produce
the initial condition.

The box size is L3 ¼ Lx � Ly � Lz ¼ ð2pÞ3 and the viscosity is set to m ¼ 0:006 (both L and m are expressed in SI units). The
measured microscale Reynolds number for the initial field is Rek ¼ 84:1 and the Reynolds number based on the integral
length-scale is Re ¼ 380. In all the figures, time is normalized by the initial eddy-turnover time stu ¼ 0:238s.

3. Results – energy decay

3.1. Resolved kinetic energy

The most basic diagnostic for the decay of isotropic turbulence is the resolved global kinetic energy defined by,
ER ¼
1

Vtot

Z
V

�ui�ui

2
dV � 1

2Vtot

X
P

�ui;P �ui;PVP ; ð20Þ
with Vtot ¼
P

PVP . The simulation results are shown in Fig. 2 while the corresponding symbol legends are defined in Table 1.
Aside from the LES runs, filtered DNS (denoted DNSf in the figure) and unresolved DNS are also presented to emphasize the
role of the LES modeling. As is obvious from the figure, unresolved DNS severely underestimate the decay rate of energy.
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Fig. 2. Time evolution of the resolved kinetic energy. The labels are defined in Table 1.



Table 1
Definition of the symbols used to characterize all the numerical simulation runs.

Label Numerical scheme Interpolation method LES model

SM (PS) Pseudo-spectral – Yes
SM1–CDS Finite volume CDS, Eq. (7) SM1, Eq. (15)
SM1–SBP Finite volume SBP, Eq. (8) SM1, Eq. (15)
SM2–CDS Finite volume CDS, Eq. (7) SM2, Eq. (18)
SM2–SBP Finite volume SBP, Eq. (8) SM2, Eq. (18)
UDNS (PS) Pseudo-spectral – No model
UDNS–CDS Finite volume CDS, Eq. (7) No model
UDNS–SBP Finite volume SBP, Eq. (8) No model
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Results obtained with SM2 are significantly better than those obtained using SM1 since they are closer to the spectral
predictions (and nearly perfectly match the filtered DNS results). We further note that the interpolation scheme used has
very little impact on the results produced using SM2 (the corresponding curves are indistinguishable). On the contrary,
the interpolation scheme has a noticeable influence on the predictions made with SM1.

3.2. Viscous and subgrid scale dissipations

The time evolution of the kinetic energy rate is determined by the viscous (�m) and subgrid scale (�sgs) dissipation rates.
These two quantities have to be computed, respectively, from (19) and the same expression with m replaced by me in order to
get the correct (discrete) balance dER=dt ¼ �m þ �sgs. Both dissipation rates are shown in Fig. 3. It is again quite clear that the
results obtained with SM2 are more precise than those obtained with SM1, and that the interpolation scheme has almost no
influence on the SM2 model predictions. The most important fact is that the subgrid scale dissipation generated by the SM1
model is much too low. Although the SM2 model also underestimates the subgrid scale dissipation at the very beginning of
the simulation, its behavior is however significantly closer to spectral results. This of course explains why the SM2 model,
compared to the SM1 model, allows a better prediction of the time evolution of the resolved energy (Fig. 2).

3.3. Kinetic energy spectra

The Fourier transform �uiðkÞ of the velocity can be computed from the velocity field known at each grid point in physical
space. The energy spectra of the flow is then defined as,
Fig. 3.
by me .
EðkÞ ¼ 1
2

Z p

0
dh
Z 2p

0
duk2 sin h j �uiðkÞj2; ð21Þ
where ðk; h;uÞ are a spherical coordinate system. Spectra at three different instants during the decay are shown in Fig. 4.
Compared to unresolved DNS simulations, all LES runs improve the spectral behavior. Again, the results from the SM2 model
are the closest to spectral ones.
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Time evolution of the viscous (left) and subgrid (right) dissipation rates computed, respectively, from (19) and the same expression with m replaced
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Fig. 4. Kinetic energy spectra measured at three instants during the time evolution. (Left) t� ¼ 0:68; (center) t� ¼ 1:98; and (right) t� ¼ 3:56.
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However, even for the SM2 model, the spectra at high wavenumbers do not decay as fast as in the spectral simulation. As
stated in the introduction, the emphasis is not put on a comparison with filtered DNS results. We only mention here that the
spectra obtained with the SM2 model have the same slope as the filtered DNS spectra at large wavenumbers, as shown by
Fig. 4. Therefore, there is no pile-up of energy at high wavenumbers for the run with SM2 model. The results only indicate
that the Smagorinsky model, when discretized using the spectral method, is (physically) slightly over-dissipative at scales
close to the cut-off.

4. Results – discretization errors

The results of the previous section clearly indicate that compared to the SM1 model, the SM2 model significantly im-
proves finite volume results. At first sight, this statement is quite surprising since they represent discretizations of the same
physical model, i.e, the Smagorinsky model. In fact, the only reason why both models differ comes from the presence of large
discretization errors. These errors are quantified, a posteriori and a priori, below.

4.1. A posteriori analysis of discretization errors

In Fig. 5 we display the average norm of the strain computed as SðaÞ ¼ hðSn
ijÞPðSn

ijÞPi or SðbÞ ¼ hD½SijSij�Pi, where the brackets
denote spatial averaging. These diagnostics are shown for all the runs, except for the unresolved DNS cases. We observe that
SðaÞ is systematically much smaller than SðbÞ and that it is sensitive to the interpolation scheme adopted (CDS or SBP) even
when using the SM2 model.

The difference between SðaÞ and SðbÞ is not anecdotal. We have seen that taking one discretization or the other greatly
influences the efficiency of the subgrid scale model. Equally important is the fact that the interpretation of some physical
results might also depend on whether we adopt SðaÞ or SðbÞ for the discretization of hSijSiji. For example, the global viscous
dissipation rate is usually defined as �m ¼ 2mhSijSiji. Depending on whether it is computed as 2mhðSn

ijÞPðSn
ijÞPi or 2mhD½SijSij�Pi,

the result differs by a factor of 2 or 3 (see Fig. 5).
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Fig. 5. Time evolution of the average norm of the strain rate computed as SðaÞ ¼ hðSn
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A question that arises is the possibility that the large differences observed in the computation of SijSij through SðaÞ or SðbÞ
are related to our way of initializing the simulations. Indeed, our initial condition is obtained by truncating a 5123 spectral
DNS field to a 323 resolution. This produces, on the real space grid, a signal that has sharp gradients and for which it is ex-
pected that second-order derivatives cannot be fairly computed. Over time, one could speculate that the numerical solution
could evolve towards a state more easily captured by the finite volume discretization and that SðbÞ=SðaÞ would converge to
unity. Fig. 6 shows that this is not the case and we even note an increase of this ratio for the LES runs with the SM1 model.
This observation is consistent with earlier results showing that the Smagorinsky model is ‘‘under-resolved” with respect to
itself [27]. Here we only stress that, as long as the LES cut-off lies in the inertial range (and remains there in the course of
time), this is a genuine feature of the LES method.

4.2. A priori analysis of discretization errors

We also use the high resolution DNS database to measure the difference between SðaÞ and SðbÞ. This provides us with an a
priori analysis of discretization errors that does not depend on the flow evolution using one model or another.

In Fig. 7 (left), SðaÞ and SðbÞ are computed on the same filtered DNS fields (5123 ! 323) at six instants in time
(t� ¼ 0; 0:24; 0:68; 1:25; 1:98; 3:56). The norm of the filtered strain computed from the spectral code is also displayed (label
DNSf). As shown, SðbÞ systematically provides a better estimation of the average strain rate and it is again almost independent
of the interpolation scheme. More quantitatively, we define dS� ¼ S�=SDNSf as the fraction of S� to the average strain rate com-
puted through the spectral code. As illustrated in Fig. 7(right), SðbÞ captures 76% of the average strain rate (for both CDS and
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SBP), while SðaÞ only captures 38% or 25% of the same quantity depending on whether CDS or SBP interpolations are used.
Since SðaÞ and SðbÞ represent the same physical quantity, we have here an example indicating that on the coarse meshes used
in LES, discretization errors can be of the same order of magnitude as the physical quantity measured.

In order to directly link the difference between ðSn
ijÞPðSn

ijÞP and D½SijSij�P to discretization errors, we evaluate SðaÞ and SðbÞ on
the initial DNS field, but filtered down to different resolutions ð323;643;1283;2563Þ. The corresponding dS� are plotted in
Fig. 8 (left) as a function of the truncation level K ¼ ðN=NDNSÞ1=3 (defined as the ratio of the filtered resolution to the initial
DNS resolution). We observe an increase of dS� as K increases for both SðaÞ and SðbÞ. This is of course expected since discret-
ization errors should decrease when the grid is refined. At N ¼ 2563, which is the finer resolution considered here1, dS�

reaches 94% for SðbÞ (for both interpolation schemes) and 74% (resp. 64%) for SðaÞ with CDS (resp. SBP). We also analyze the con-
vergence of ðSn

ijÞPðSn
ijÞP and D½SijSij�P with respect to the resolution by smoothing the velocity field. To that end, we apply a spectral

cut-off filter to our initial 323 instantaneous velocity field. This spectral cut-off is defined as:
1 Unf
ûiðkÞ ¼
uiðkÞ if jkj 6 kc

0 otherwise

�
; ð22Þ
where kc ¼ 1=Dc is the cut-off wavenumber. This procedure has the advantage of being less demanding in computational
resources than the previous mesh refinement. Fig. 8 (right) shows dS� as a function of Dc (the lowest value of Dc corresponds
to kc ¼ 15 and the highest value to kc ¼ 1). It is again clear that SðbÞ predicts significantly better the average strain rate. As
expected, all the methods to measure the strain rate (SðaÞ, SðbÞ and spectral), converge to the same value as the velocity field is
filtered and smoothed.

5. Conclusions

In this paper we have discussed two issues related to discretization errors in large eddy simulations. The first one con-
cerns the numerical implementation of Smagorinsky type models. We argue that in order to properly evaluate the norm
of the strain and the turbulent viscosity, it is important to consider how the Navier–Stokes equations have been discretized.
The implementation we propose is directly derived from the discrete budget of kinetic energy conservation and performs
significantly better than the traditional ‘‘volume centered” expression. This is clearly due to the fact that the improved for-
mulation (17) is consistent with the discrete strain imposed by the numerical algorithm whereas the ‘‘volume centered”
expression is not. Although we have focused on homogeneous turbulence, the formulation proposed can be immediately ex-
tended to more complex geometries and to other models that use the strain as a scaling. In particular, the dynamic procedure
can be used to optimize the Smagorinsky constant C. Extension of our analysis to the case of the channel flow is under
preparation.

The second issue we highlighted is the presence of large discretization errors that can be made on diagnostics in LES. For
example, we showed that the measurement of viscous dissipation could vary by a factor of 2–3 when using two different
discretizations of this diagnostic. Moreover, the quantification of the error with respect to the filtered DNS showed that dis-
cretization errors can be of the same order of magnitude as the physical quantity measured. The problem is not related to the
ortunately, we could not run the finite volume code at the highest spectral resolution 5123 because this exceeded our computational capabilities.
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absence of subgrid scales in LES simulations (which do not allow a direct comparison with DNS results without filtering or
reconstruction). The uncertainty is due to the fact that a LES signal has a significant content at scales close to the grid size and
that discrete operators cannot resolve those scales without ambiguity.

As a consequence, it could be concluded that the only way to properly perform an LES is to introduce an explicit filter that
strongly damps the signal below the grid size. However, expressions for the subgrid stress tensor related to an explicit filter
involve power series in the grid filter size D and terms of high-orders in the derivatives of the velocity field [4]. These terms
are therefore increasingly difficult to represent on a coarse LES mesh even for filtered signals. In other words, the more a
signal is filtered, the more it is difficult to discretize its evolution equations. Furthermore, explicit filtering is difficult to
implement for problems involving stretched or skewed meshes. Another option to circumvent the problem of discretization
errors, is to use higher-order discretization schemes. These remain accurate for larger grid sizes and are therefore able to
better resolve a typical LES signal. Unfortunately, higher-order methods are also difficult to implement and restricted to a
limited class of problems. For most practical cases where LES are performed without explicit filtering and with low-order
schemes (like 2nd-order), acceptable physics can however be extracted from the simulation as long as the diagnostics con-
sidered do not involve scales close to the grid resolution.
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Appendix A. Relation between �2m+PVPD½SijSij�P and the discrete global dissipation

In the limit Dt ! 0, the discrete global dissipation (19) becomes
�
X

P

�un
i;P

X
f

mð@i�un
j þ @j�un

i Þf bj;f Af : ðA:1Þ
The superscript n is omitted in the following. Following (17) we also have,
2m
X

P

VPD½SijSij�P ¼ �m
X

P

�ui;P

X
f

ð@i�uj þ @j�uiÞf bj;f Af þ m
X

P

X
f

�ui;f ð@i�uj þ @j�uiÞf bj;f Af : ðA:2Þ
To show that 2m
P

PVPD½SijSij�P is equal to the discrete global dissipation, we thus need to prove thatP
P

P
f
�ui;f ð@ i�uj þ @j�uiÞf bj;f Af ¼ 0 (up to a boundary contribution which vanishes in the periodic case).

Using the definition of the face variables and the velocity derivatives, we have,
X
P

X
f

�ui;f ð@i�uj þ @j�uiÞf bj;f Af ¼
X

P

X
f

ð�ui;P þ �ui;nbrÞ
2

ð�ui;nbr � �ui;PÞ
kxj;nbr � xj;Pk

Af þ
X

P

X
f

ð�ui;P þ �ui;nbrÞ½ð@i�ujÞP þ ð@i�ujÞnbr�
4

bj;f Af
In both sums, all internal boundaries contribute twice with an opposite contribution for the two control volumes they de-
limit. Indeed, in the first (resp. second) sum, �ui;nbr � �ui;P (resp. bj;f ) changes sign for two neighboring volumes while the other
terms remain identical. The second term on the rhs of (A.2) is thus a boundary term as required.
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